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Abstract. In this work, we consider how to improve the efficiency of controlling flow turbulence in two-
dimensional Navier-Stokes equations. We suggest a control strategy which applies local feedback injections
by moving controllers. In the moving frame, this strategy is equivalent to adding a gradient force term in
the governing equation. It is shown that with the moving controllers, flow turbulence can be controlled more
efficient than the usual pinning strategy with static controllers, provided that the number of controllers
and the injection energy are the same. The physical mechanism underlying this higher control efficiency
is heuristically analyzed. The advantages and difficulties of the proposed control strategy in practical
applications are discussed.

PACS. 05.45.Gg Control of chaos, applications of chaos – 47.27.Rc Turbulence control – 05.45.Xt
Synchronization; coupled oscillators

1 Introduction

For more than one century the physics of flow turbulence
and the control of flow turbulence have attracted great
interest of scientists and engineers due to its fascinating
complexity and exceeding importance in practice [1–7].
After decades of extensive investigation in flow turbulence
control, many passive and active methods for controlling
flow turbulence have been successfully developed in engi-
neering fields [8–16]. However, many difficulties and chal-
lenging problems still remain in this domain so far.

In the past decade, the topic of chaos control has at-
tracted great interest in the field of nonlinear science due
to its theoretical significance and potential in practical
applications [17–21]. Recently, much attention has been
paid to controlling high-dimensional spatiotemporal chaos
[22–32]. For example, the control of “phase turbulence”
and “defect turbulence” in excitable and oscillatory sys-
tems has been extensively studied [33–41]. It is generally
believed that the control of flow turbulence could ben-
efit from those strategies developed in controlling high-
dimensional chaotic systems. However, controlling flow
turbulence based on the understandings of nonlinear dy-
namics and chaos control is just at the very start. Recently,
the global and local pinning control methods developed in

a e-mail: ganghu@bnu.edu.cn

spatiotemporal chaos control have been applied to control
the flow turbulence described by incompressible Navier-
Stokes equations (NSE) [42,43].

Control efficiency, i.e., how to achieve successful con-
trol as fast as possible with as few as possible number
of controllers, is of particular importance in control prob-
lems, especially in practical applications. The main pur-
pose of the present work is to enhance the efficiency of tur-
bulence control with pinning strategy. It is found that by
using local pinning strategy with moving controllers, flow
turbulence can be controlled more efficiently, compared
with the usual static pinning control. More importantly,
this improvement of control efficiency is not at the cost of
increasing the number of controllers and the injected en-
ergy. Numerical examples based on two-dimensional NSE
are provided to illustrate the idea. The control efficiency
in terms of convergence speed to the target with moving
controllers is compared with that of the usual static pin-
ning control. The mechanism underlying this high control
efficiency is heuristically analyzed.

The paper is organized as follows. In Section 2, the
dynamical model, the numerical scheme, and the pinning
control method are introduced. Section 3 is devoted to the
theoretical description of controlling flow turbulence with
moving controllers. It is shown that the moving controller
strategy is equivalent to control NSE in the presence of an
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additional gradient force. The detailed results of control-
ling flow turbulence with moving controllers are presented
in Section 4. Brief conclusion is presented at the end of
this paper.

2 Theoretical model

In this paper, we consider flow turbulence described by the
following incompressible two-dimensional NSE [42,43]

∂�u

∂t
+ �u · ∇�u = −∇p +

1
Re

∇2�u, (1a)

∇·�u = 0, (1b)

with �u = (u, v), and �r = (x, y). Here p is the pressure, and
Re the Reynolds number. Space periodic boundary con-
ditions x + 2π = x, y + 2π = y are applied. Throughout
this paper we keep Re = 5000, and the flow is thus in the
regime of fully developed turbulence. For the numerical
treatment, Fourier pseudospectral method, the Adams-
Bashforth-Crank-Nicolson scheme [44], and the de-aliasing
technique [45] are used in our simulations. Spatial dis-
cretization of a 2π × 2π computational domain is per-
formed in 256× 256 grid points. In the computation, dou-
bly periodic boundary condition is assumed. The validity
of numerical results is confirmed by varying space and
time steps. For the freely decaying two-dimensional flow
turbulence, initial conditions are important for the flow
dynamics. Usually, the initial conditions are assigned in
Fourier space with specific energy spectrum such as

E(k, 0) ∼ ke−(k/k0)
2
, (2)

where k is the wave number and k0 a constant. In the
current study, we use this initial energy spectrum with
k0 = 5.0. In Figure 1, the evolution of two-dimensional
flow turbulence is shown, where the typical characteris-
tics of two-dimensional flow turbulence, such as vortices
forming, vortices collision and merging, and vortices dif-
fusion are clearly seen. We use this turbulent dynamics as
the reference for control.

The local pinning control of turbulence is to apply
feedback signals

−ε′(�u − �uT ) (3)

to some local regions of the space domain, where �uT is the
target state. In the current work, two different targets �uT1

and �uT2 are considered. �uT1 is a laminar flow

uT1 = 0.05, vT1 = 0.0, (4a)

and �uT2 is a spatially periodic state, i.e.,

uT2 = −γ cos(x) sin(y)e−2t/Re,

vT2 = γ sin(x) cos(y)e−2t/Re. (4b)

with γ = 0.1. Both �uT1 and �uT2 are the exact solutions of
NSE.

π

π π

π

π

π

π

π

Fig. 1. Contour pictures of the evolution of the vorticity field
of equation (1). Re = 5000. The spatial resolution is 256×256.
The time step is ∆t = 0.001. These parameters are used
throughout the paper. The initial conditions are given by equa-
tion (2) with the initial energy E(t = 0) = 0.01. (a) t = 5; (b)
t = 30; (c) t = 60; (d) t = 100.

In numerical simulation, the grid points where the con-
trol signals are added are called controllers. Specifically,
with the pinning feedback control, equation (1a) becomes

∂�u

∂t
+ �u · ∇�u = −∇p +

1
Re

∇2�u

−
M∑

i=1

ε′δ(�r − �ri)(�u − �uT ), (5)

where �ri, i = 1, 2, ..., M , are the indices of controllers. In
the present work, the controllers are uniformly distributed
in the computational domain. The total number of con-
trollers is

M =
(256)2

IxIy
, (6)

where Ix and Iy are the distances between two neighbor-
ing controllers in x and y directions, respectively. In the
theoretical model of equation (5), the control forces with
infinitely large amplitude are applied to a number of space
points with zero area. In numerical simulations and experi-
mental applications, the actual control forces are finite and
they are applied in space grid points with nonzero area.
Specifically, in our simulations we directly use a feedback
force ε(�u − �uT ) to each controlled grid where ε is scaled
from ε′ by a fact ε = ε′

|∆x||∆y| with ∆x and ∆y being the
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Fig. 2. Controlling flow turbulence with static controllers. The
governing equation is equation (5). ε = 5. The pinning control
is applied to the reference state (see Fig. 1) from t = 5.0. The
target state is �uT2. For (a) and (b), Ix = 8, Iy = 4. (a) ln(σ′(t))
vs t. (b) vorticity contour at t = 50. For (c) and (d), Ix = 8,
Iy = 8. (c) ln(σ′(t)) vs. t. (d) vorticity contour at t = 80.

space discretization steps in x and y directions, respec-
tively (note, we use |∆x| = |∆y| = 2π

256 throughout the
paper). It is obvious that ε −→ ∞ as |∆x|, |∆y| −→ 0.
And this agrees with the delta function of equation (5) in
the infinite resolution limit. In the following we will use
ε instead of ε′ as the control strength coefficient. For the
pinning control applied in equation (5), the control effi-
ciency is determined by the control strength ε, the total
number of controllers M , and the space distribution of the
controllers. In this paper, we fix ε = 5 and focus on the
discussion on the control efficiency for different numbers
of controllers (different M’s).

In Figure 2, we present the control results with the tar-
get of equation (4b) with various numbers of controllers.
It is observed that local pinning control can successfully
suppress flow turbulence as long as the density of con-
trollers is sufficiently large. Numerically, it is found that
no satisfactory control is achieved when the proportion of
the controllers to the total grids is smaller than 6%. This
agrees with the results in reference [42].

3 Controlling flow turbulence with moving
controllers

The central task of the present paper is to enhance the ef-
ficiency of controlling flow turbulence. Namely, we are in-

teresting in how to enhance the speed with which the tur-
bulence converges to the target, or to enlarge the param-
eter region within which the turbulence can be entrained.
Intuitively, one may increase the number of controllers or
increase the energy of the driving signals to achieve this
purpose. Nevertheless, these methods are trivial in the
sense that they rely on the injection energy and do not
make use of the dynamical properties of the system to be
controlled. Practically, it is highly desirable for us to im-
prove the control efficiency without increasing the number
of controllers or increasing the injection energy. Therefore,
in this work, we are looking for nontrivial methods which
can improve the control efficiency while keeping M and ε
in equation (5) unchanged.

Here we propose a control strategy which uses moving
controllers. The idea of moving controllers is as follows.
Instead of injecting the feedback signals (3) into the fixed
space points, we move the controllers with certain velocity
V in the course of control, i.e., the pinning control now
becomes

M∑

i=1

ε′δ(�r − �ri(t))(�u − �uT ), (7)

where �ri(t) = �ri(0)+ �V t. In equation (7), the moving con-
trol is defined in the frame of flow system. Equivalently, in
the moving frame fixed with the controllers, the dynamical
equation with the control becomes [34]

∂�u

∂t
+ �u · ∇�u = −∇p − �V · ∇�u +

1
Re

∇2�u

−
M∑

i=1

ε′δ(�r − �ri)(�u − �uT ). (8)

In equation (8) �ri, i = 1, 2, ..., M , are static. But the target
�uT should be written in the moving frame. The essential
difference between equations (5) and (8) is that the latter
contains an additional gradient term. In fact, this kind
of gradient force is common in many situations. In the
following, we will show that this gradient term is crucial
for enhancing the efficiency of controlling flow turbulence
in the meantime without increasing the injection energy.

It is emphasized that the control scheme equation (8)
can be effectively used for realistic turbulence control ap-
plications. First, if flow systems have spatially periodic
boundary geometries (i.e., in ring- or torus-like contain-
ers), the moving control strategy can be easily performed
by circling the controllers. Second, if flow systems contain
certain gradient forces (like water flow in a sloping chan-
nel, or charged particle flow under a constant electrical
field), equation (8) can be realized by static controllers
(now the first derivative term of equation (8) appears due
to the gradient force rather than the moving of the con-
trollers). These two cases include many important and
practical situations of turbulence control. Of course, some
assumptions on the technical capacities are needed for re-
alizing the control of equation (8). The most important
assumptions are the capability to make instant measure-
ments of the system variables at the pinning points and
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Fig. 3. Controlling flow turbulence with moving controllers.
The governing equation is equation (8). Vx = 1.2. The other
settings are the same as in Figure 2. For (a) and (b), Ix = 8,
Iy = 4. (a) ln(σ′(t)) vs t. (b) vorticity contour at t = 50. For
(c) and (d), Ix = 8, Iy = 8. (c) ln(σ′(t)) vs t. (d) vorticity
contour at t = 80.

to perform feedback injections responding to the measured
data. These are actually the general assumptions for any
feedback control. Another technical requirement for ex-
perimental realizations is to design moving frame of the
controllers with constant (or slightly fluctuated) velocity.
This is not always easy, but is experimentally realizable
at least, if the flow systems are confined in ring-like con-
tainers.

To test the control effect of pinning control with mov-
ing controllers, we carried out numerical simulations to
equation (8) as we did to obtain results in Figure 2. For
simplicity, the controllers are only moving in the x direc-
tion throughout this paper, i.e.,

�V = (Vx = 1.2, Vy = 0). (9)

Comparing Figure 3 with Figure 2, immediately we can
find two improvements using the control strategy with
moving controllers. First, with the same M the moving
control can suppress flow turbulence significantly faster
than the static control. Second, the moving control can
successfully suppress turbulence with certain number of
controllers M , with which the static control fails. These
results do not depend on the target. In our simulations,
qualitatively similar results have been obtained when tar-
get �uT1 is considered.

σ

Fig. 4. Characterizing the control efficiency with moving con-
trollers. (a) ln(σ′(100)) vs. ln(M). (b) α vs. ln(M). See equa-
tion (12) for the definitions of σ′(t) and α.

4 Analysis of efficiency of moving control

The comparison of Figures 2 and 3 gives a qualitative im-
pression on the effectiveness of the moving control. In this
section, we present quantitative characterization on this
control strategy. In order to measure the distance between
the turbulence system and the target, we can consider
the deviation between the vorticity field of the turbulence
ω(x, y, t) and that of the target ωT (x, y, t) as

∆ω = ω(x, y, t) − ωT (x, y, t), (10)

where ω(x, y, t) = vx − uy and the subscript denotes the
derivative over the corresponding space variable. We fur-
ther define the variance of ∆ω, i.e.,

σ(t) =

⎧
⎨

⎩
1

(256)2

256∑

i=1,j=1

[�ω(i, j, t)]2

⎫
⎬

⎭

1/2

(11)

as the quantitative measure of the control efficiency.
In Figure 4a we plot ln(σ′(100)) against ln(M) for both

static and moving control with the target �uT1 used. σ′(t)
is defined as σ(t)/σ(0) and it decays exponentially as

σ′(t) ∼ e−αt. (12)

With fixed ε, the exponent α depends on M and V . In
Figure 4b we plot α versus lnM for the same target �uT1.
From Figure 4, it can be found that with moving con-
trollers the local feedback control entrains the system to
the target faster than that with the static controllers. We
emphasize that this result is independent of the target.
Similar results have been obtained when target �uT2 is used
in simulations. From Figure 4, it can also be seen that the
control efficiency between the static and moving control
becomes negligible as M is sufficiently large. This is rea-
sonable because with large density of controllers pinning
control turns out to be approximately global. In this situ-
ation, moving control does not make significant difference
from the static one.

Another important quantity for controlling flow turbu-
lence is transient time needed for turbulence suppression.
Here, we define the transient time τ as the time interval
between the start of control and the moment after which
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Fig. 5. Comparison between the transient time with static control and that with moving control for different targets. (a) τ vs.
ln(M) for target �uT1. (b) τ vs. ln(M) for target �uT2. (c) τ vs. Vx. For Vx = 0, the static control fails to control turbulence in
this situation.

σ′(t) becomes smaller than a threshold 5 × 10−3. In Fig-
ures 5a and 5b, we plot τ vs. lnM for both static and
moving control. It is seen that with moving controllers of
velocity Vx = 1.2 flow turbulence can be suppressed ap-
proximately two times faster than that with the static con-
trol, provided the same number of controllers M and the
same control strength ε. Apparently, this improvement of
control speed is due to the gradient term in equation (8).
Finally, in order to find how the speed of the moving con-
trollers affect the effectiveness of turbulence control, we
study how τ changes with Vx while keeping M = 32 × 32
(Ix = 8, and Iy = 8) fixed. The results are shown in
Figure 5c. It is found that the transient time decreases
monotonically when the speed of the moving controllers
increases.

The results in the present study can be heuristically
understood. With static control, the injected feedback sig-
nals first drive the local regions where the control signals
are added to the target state. Then the control effect prop-
agates to the regions where no direct control signals are
injected. In this process, the spatial correlation of the dy-
namical system plays an important role. This space cor-
relation length characterizes the effective control area of
each controller. Therefore, for static control, it requires
sufficiently high density of controllers to achieve success-
ful control. The threshold of the density of the controllers
is roughly determined by the requirement that the av-
erage distance between two neighbor controllers should
be smaller than the space correlation length of the un-
perturbed system [27]. In the case of moving controllers,
the driving signals can inject to all the spatial regions
of the paths along which the controllers move. Roughly
speaking, the control effect of a moving controller (with
moving velocity V ) at a space point x and a time mo-
ment t can be maintained and supported by the control
effect of the successive controllers at late time t+ ∆l

V (∆l is
the distance of two neighbor controllers). And this mecha-
nism effectively increases the effective control area of each
controller. Therefore, the same or even better control ef-
fect can be achieved with smaller number of moving con-
trollers. Nevertheless, the moving control should pay price
for this advantage. Unlike the static control, the moving

control does not inject feedback signals continuously to
any fixed space regions, instead it injects control signals
into the regions along the paths of controllers sporadically.
In order to make successful sporadic control, time inter-
val between two successive injections in a spatial region
should be smaller than the temporal correlation length
of the local dynamics. This explains the observation that
larger velocity Vx, i.e., smaller time interval between spo-
radic injections, has better control effect as shown in Fig-
ure 5c.

5 Concluding remarks

To conclude, in the present study we suggest to control
flow turbulence described by the two-dimensional NSE
with moving controllers. Theoretically, this method is
equivalent to adding an additional gradient coupling term
in the governing equation of velocity field. Numerical ex-
periments demonstrate that the proposed control strategy
can enhance the control efficiency while without increas-
ing the number of controllers and the energy of injected
signals. Recently, many experimental works have achieved
spatiotemporal chaos control with various dynamical con-
trol methods [28,32,46,47]. We hope the present theoret-
ical work may attract attention from experimentalists on
the flow turbulence control applications.

In this work we analyse flow turbulence control only
for a specific Reynolds number Re = 5000, and for the
simplest periodic boundary condition. The advantages of
moving controllers strategy in enhancing efficiency of flow
turbulence control exist for different Reynolds numbers.
Moreover, we expect that these advantages may exist for
more general boundaries, in particular, the boundaries
with complex geometry and obstacles. These more com-
plicated problems will be discussed in our future works.
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